- Разработка чертежей марок КЖ и КЖИ в соответствии с отечественными стандартами.
- Разработка чертежей марок КЖ и КЖИ в соответствии с ДБН В.2.6-98:2009 (Украина).
- Формирование одиночных и составных строительных конструкций.
- Использование универсальных инструментов схематичного и детального армирования.
- Автоконтроль норм проектирования по СНиП 2.03.01-84, СП 52-101-2003.
- Автоматическое специфицирование арматурных изделий.
- Автоматическое проектирование и специфицирование сварных сеток по ГОСТ 23279–2012.
- Отрисовка нестандартных арматурных изделий.
- Автоматизированная отрисовка арматурных изделий: хомутов, шпилек, спиралей, фиксаторов и т.д.
- Использование стандартных и создание пользовательских закладных изделий.
- Расширенные возможности работы с элементами металлопроката.
- Возможность получения всех видов спецификаций, в том числе ведомости расхода стали и ведомости деталей с автоматической вставкой эскиза детали.
- Подбор и проектирование перемычек.
- Автоматическая генерация спецификаций и ведомостей.
- Автоматизированная раскладка плит перекрытий на участках перекрытия с возможностью редактирования участка.
- Экспорт спецификаций в Microsoft Excel.
- Обеспечение полной совместимости с чертежами, выполненными в Project Studio^{cs} версий 5.х и 6.х.

Диспетчер марок

Диспетчер марок предназначен для просмотра и управления элементами армирования на чертеже, а также для формирования и последующего использования одиночных и составных железобетонных конструкций.

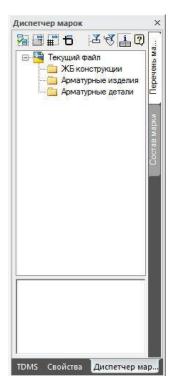


Рис. 1. Окно Диспетчера марок

- Отображение элементов армирования, используемых в чертеже, с возможностью просмотра и редактирования их параметров в составе Диспетчера марок (рис. 1).
- Сборка элементов армирования в объект Железобетонная конструкция (рис. 2).
- Просмотр и редактирование перечня элементов армирования в составе отдельных и составных железобетонных конструкций (добавление, удаление и изменение параметров элементов) (рис. 3).
- Формирование одиночных и вложенных конструкций.

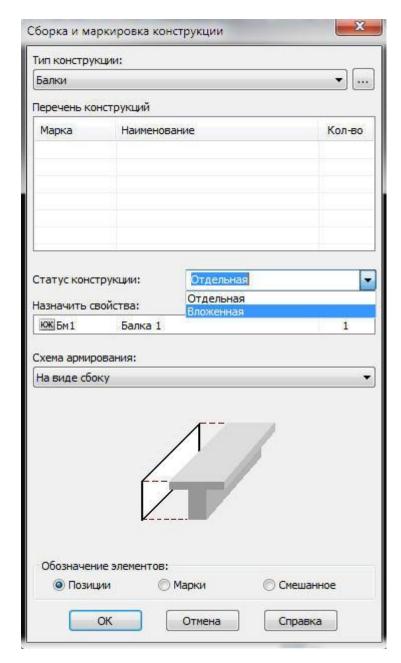


Рис. 2. Диалог формирования вложенной конструкции

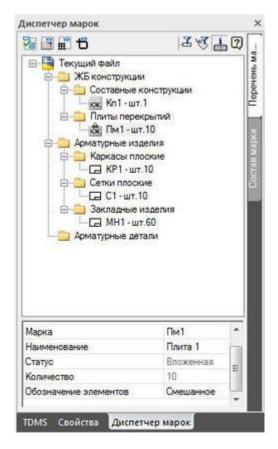


Рис. 3. Сборка составной конструкции

• Удобный механизм введения материалов в формируемой составной конструкции (рис. 4).

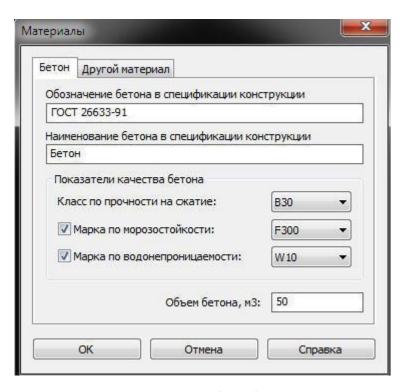


Рис. 4. Ввод материала в собранной конструкции

- Просмотр всех элементов собранной конструкции на чертеже методом выделения.
- Сборка и маркировка арматурных изделий, регистрация их чертежей.

 Автоматическое формирование спецификаций на арматурные изделия и на сформированные объекты Железобетонной конструкции (плиты, балки, колонны и т.д.).

Диспетчер настроек параметров объектов

Диспетчер настроек параметров объектов предназначен для создания шаблона чертежа и используется для решения следующих задач:

- управление настройками параметров всех элементов программы (рис. 5–7);
- использование стандартных и создание пользовательских слоев с настройкой их свойств (рис. 8);

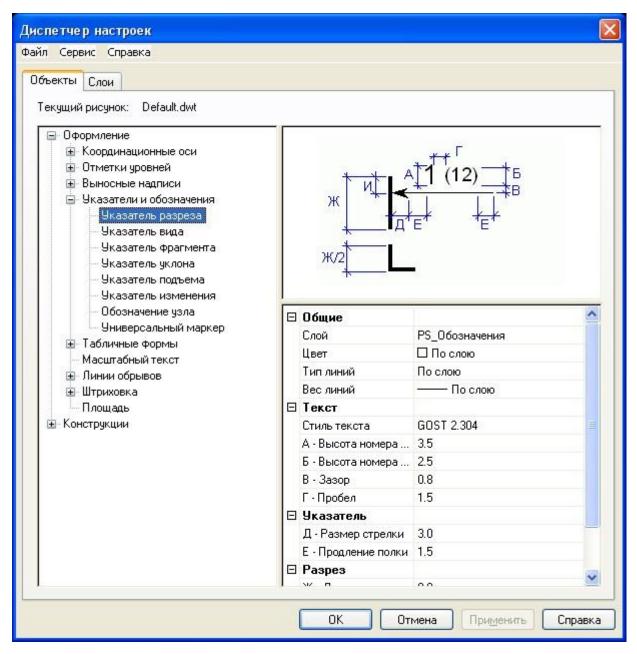


Рис. 5. Диспетчер настроек (настройка оформления)

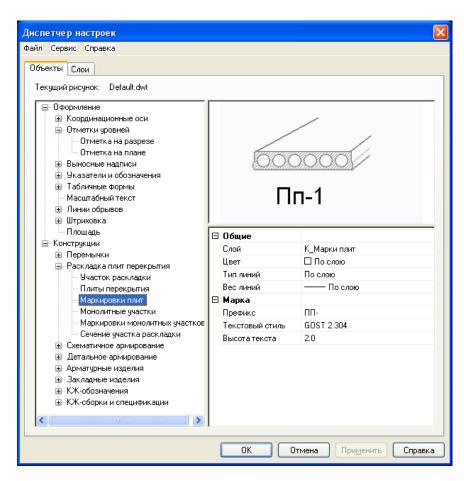


Рис. 6. Диспетчер настроек (раскладка плит перекрытия)

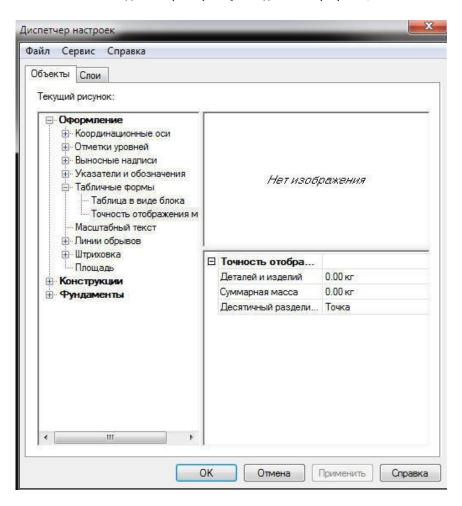


Рис. 7. Диспетчер настроек (настройка спецификации)

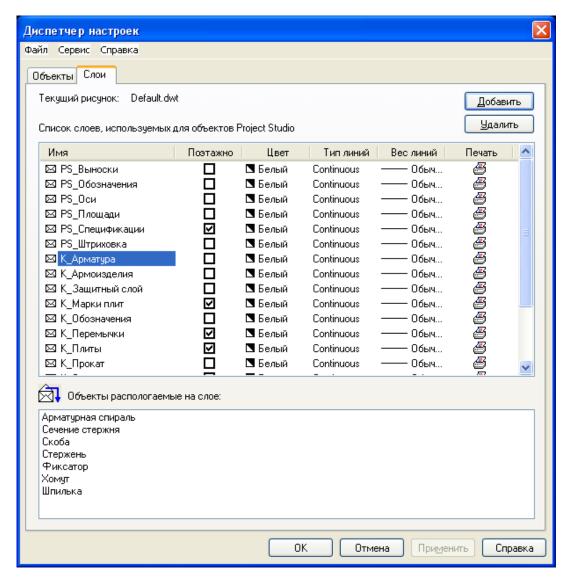


Рис. 8. Работа со слоями

- сохранение настроек в файле для их последующего использования в других проектах;
- настройка параметров ассоциативных выносок.

Оформление чертежей

Набор инструментов, предназначенных для оформления чертежей в соответствии с требованиями СПДС (рис. 9), используется для решения следующих задач:

Рис. 9. Панель инструментов оформления чертежа

 отрисовка строительных осей на чертеже — по отдельности или как массива (рис. 10−11);

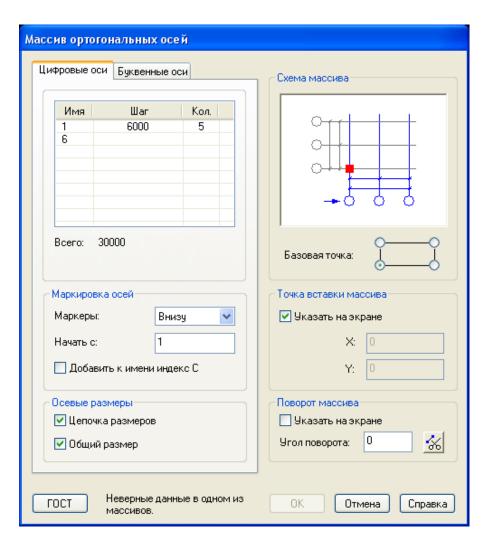


Рис. 10. Массив осей

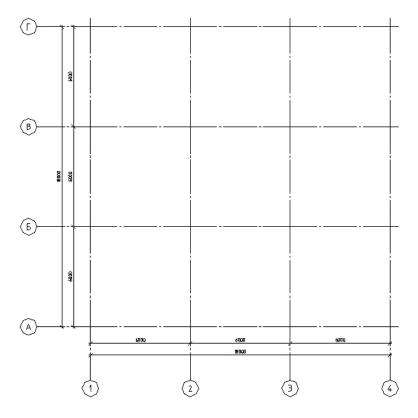


Рис. 11. Сетка строительных осей

• обозначение на чертеже ассоциативных высотных отметок и отметок на планах (рис. 12);

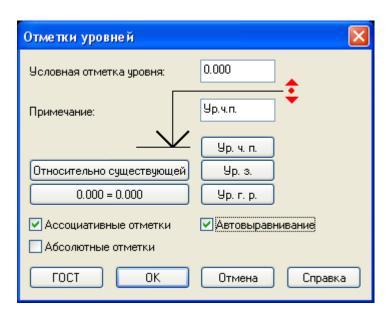


Рис. 12. Нанесение отметки уровня

• отрисовка выносок на чертежах с использованием записной книжки и специальных символов (рис. 13–14);

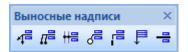


Рис. 13. Панель инструментов выносных надписей

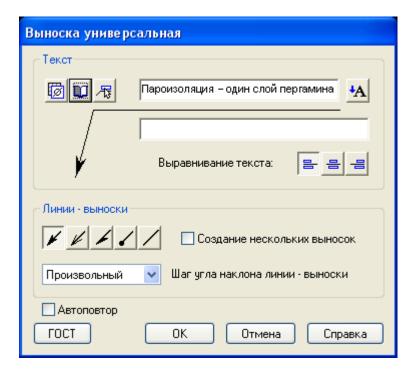


Рис. 14. Выноска универсальная

• нанесение на чертеж разрезов, фрагментов и флажков изменений (рис. 15);

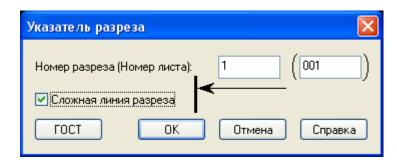


Рис. 15. Указатель разреза

• использование масштабного текста в чертеже (с применением записной книжки и спецсимволов) (рис. 16);

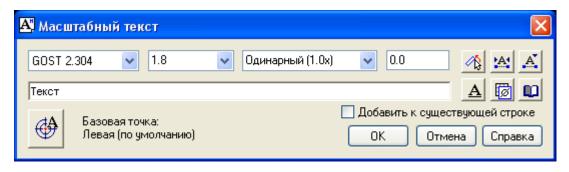


Рис. 16. Масштабный текст

• использование записной книжки с возможностью пополнения пользовательских страниц и таблиц (рис. 17);

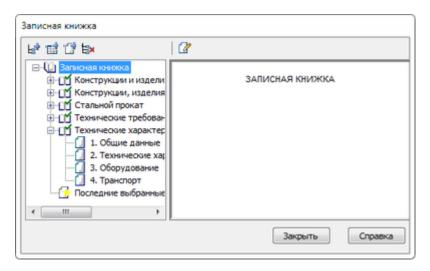


Рис. 17. Записная книжка

- отрисовка граничных штриховок с возможностью их редактирования;
- использование в работе специальных инструментов построения;
- использование инструментов определения площади по контуру;
- сохранение шаблонов спецификаций, разработанных пользователем, с возможностью последующего редактирования таблиц;
- экспорт данных спецификаций в программу Microsoft Office Excel;
- импорт данных спецификаций из программы Microsoft Office Excel;
- использование инструментов управления слоями чертежа.

Инструменты армирования железобетонных конструкций. Схематичное армирование

Область применения программных средств этого раздела — выполнение схем армирования железобетонных конструкций. Возможности предлагаемых инструментов:

- выбор нормативного документа из диалогового окна Сортамент арматуры, определяющего последующий выбор класса и диаметра линейных элементов армирования (стержни и детали), а также контрольных параметров при их создании (рис. 18);
- возможность автоматически присвоить арматуре, ранее отрисованной по СНиП 2.03.01–84*, соответствующие классы по СП 52–101–2003 путем выбора нужной позиции в диалоговом окне;

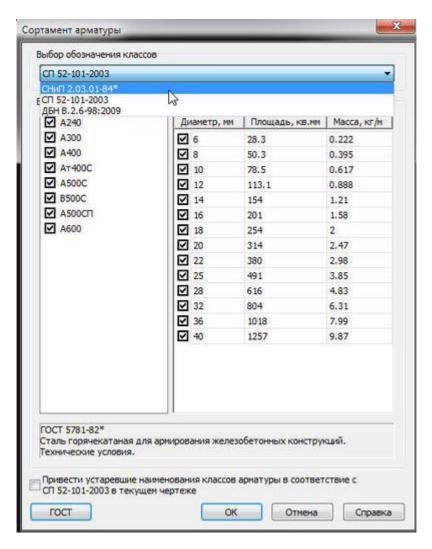


Рис. 18. Выбор нормативного документа

• отрисовка на чертеже линейных элементов армирования с возможностью присвоения параметров (стержни, детали и закладные изделия) (рис. 19);

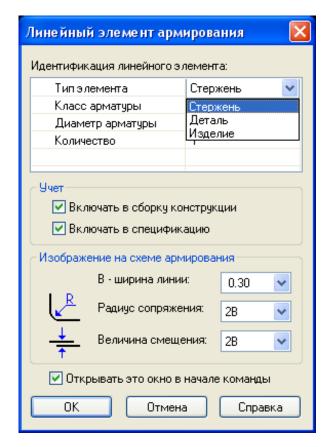


Рис. 19. Условное изображение элемента схематичного армирования

- возможность управлять включением элемента армирования в состав конструкции и спецификации при его создании и редактировании;
- возможность преобразования стандартных элементов чертежа формата *.dwg (линии, полилинии и дуги) в объекты схематичного армирования (стержни, детали и закладные изделия);
- инструмент Участки распределения арматуры, предназначенный для создания участков распределения правильной и произвольной формы с учетом отверстий;
- при использовании инструмента Массив на участке создается связанная группа объектов программы (участок распределения, линейный элемент армирования и ассоциативная выноска). Все объекты связанной группы доступны для редактирования. Количество арматурных стержней в этом случае приводится в метрах с учетом общей площади участка распределения;
- распределение линейных элементов армирования (стержни, детали и изделия) по диапазону распределения, причем геометрия направляющей может быть различной. Все объекты связанной группы доступны для редактирования;
- формирование на чертеже условного арматурного сечения (стержень, деталь и изделие) по условному диаметру, задаваемому пользователем (рис. 20);
- распределение условных арматурных сечений по параметрам и траекториям, выбираемым пользователем (рис. 21);

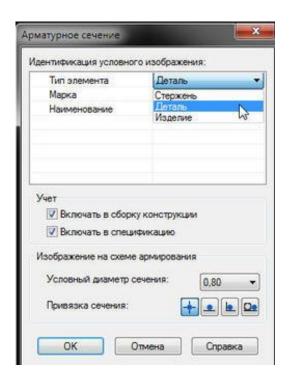


Рис. 20. Условное арматурное сечение

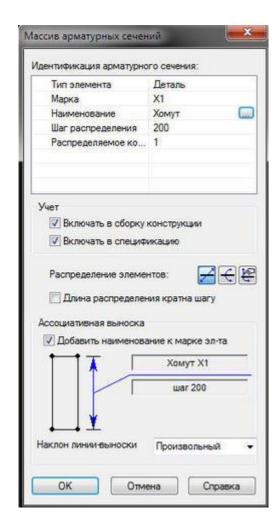


Рис. 21. Распределение условного арматурного сечения

- условное изображение арматурных сеток с маркой и с параметрами ранее отработанных в проекте марок арматурных изделий;
- отрисовка сечения арматурной сетки с присвоением марки;
- отрисовка группы сеток с присвоением марки;
- раскладка сеток на участке с присвоением марок основных и добавочных сеток;
- добавление изображения анкеров к линейным элементам армирования и редактирование изображений анкеров;
- редактирование линейных элементов армирования;
- преобразование условных изображений в ранее разработанные марки деталей и изделий с последующим включением их в спецификации.

Инструменты армирования железобетонных конструкций. Детальное армирование

Область применения программных средств этого раздела— выполнение чертежей армирования разрезов и деталей железобетонных конструкций. Возможности предлагаемых инструментов:

• отрисовка арматурных стержней и деталей с учетом их количества, исходя из принятого типа распределения по конструкции (по длине конструкции, по указанной длине и по количеству) (рис. 22);

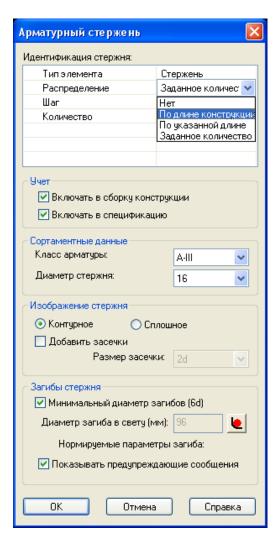


Рис. 22. Арматурный стержень детального армирования

- возможность управлять включением элемента армирования в состав конструкции и спецификации при его создании и редактировании;
- учет количества арматурных деталей (хомутов, шпилек и скоб), исходя из принятого типа распределения по конструкции (по длине конструкции, по указанной длине и по количеству);
- определение длины отрисовываемого поперечного сечения стержня или детали с учетом метода определения его длины в конструкции (по длине конструкции, по указанной длине);
- возможность использования зарегистрированных марок арматурных изделий, созданных при разработке схем армирования;
- возможность преобразования стандартных элементов чертежа формата *.dwg (линии, полилинии и дуги) в объекты детального армирования (стержни и детали);
- редактирование стержней;
- порядок следования стержней на чертеже (эта возможность позволяет получить представление о расположении стержней в конструкции);
- отрисовка границ защитного слоя для последующего его использования при армировании конструкции;
- распределение поперечных сечений стержней в конструкции (с учетом нормативных требований);
- соединение отдельных стержней петлей;
- отрисовка хомутов, шпилек и скоб (вид спереди) по отрисованным ранее поперечным сечениям стержней с последующей регистрацией чертежа детали;
- автоматическое формирование эскиза детали в процессе регистрации ее чертежа и автоматическое добавление эскиза в формируемую ведомость деталей (рис. 23);

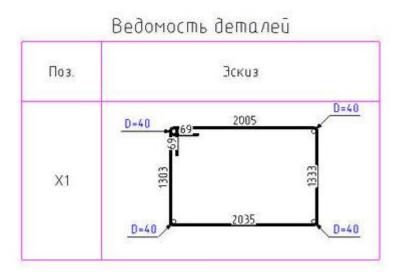


Рис. 23. Автоматическое формирование ведомости зарегистрированных деталей

- создание вида хомутов, шпилек и скоб сбоку с использованием параметров ранее созданных марок для получения полных данных об элементе;
- отрисовка чертежа «Арматурная спираль» и подсчет общей длины стержня;
- отрисовка фиксатора-разделителя (вид спереди, вид сбоку и вид сверху) и подсчет полной длины стержня.

Закладные изделия

Набор инструментов Закладные изделия предлагает следующие возможности:

• использование в чертежах марок унифицированных закладных изделий по серии 1.400-15 (рис. 24) с учетом возможности определения параметров анкеровки и подбора марки стали (рис. 25-26);

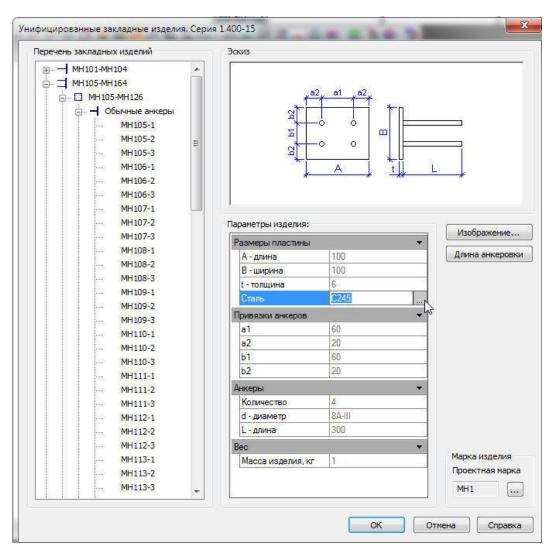


Рис. 24. Унифицированные закладные изделия

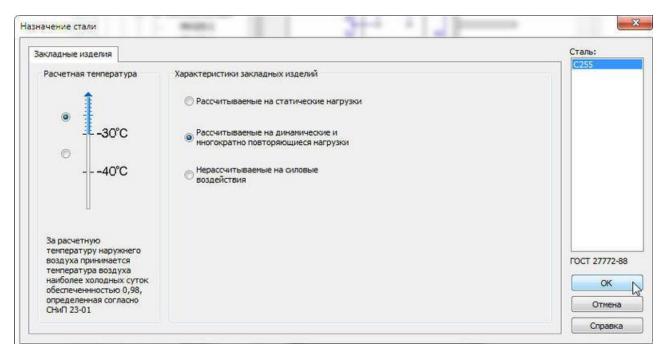
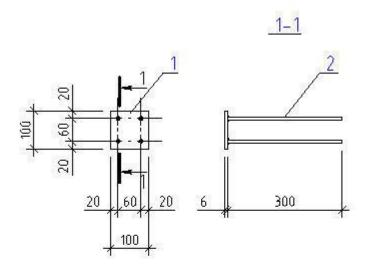



Рис. 25. Подбор марки стали для закладного изделия

Спецификация арматурных изделий

Поз.	Наименование	Кол.	Macca ed, ka
1	Пластина 6×100 ГОСТ 103-76 L= 100	1	0.47
2	Ø8 A-III FO(T 5781-82* L=300	4	0 12
	Масса изделия:		1.0

Рис. 26. Чертеж и спецификация закладного изделия

• отрисовка элементов металлопроката, включая листовой прокат (ГОСТ 103-76, ГОСТ 82–70, ГОСТ 8568–77, ГОСТ 19904–90, ГОСТ 19903–74) (рис. 27-28), с учетом марки стали, выбираемой в соответствующем диалоговом окне (рис. 29-30);

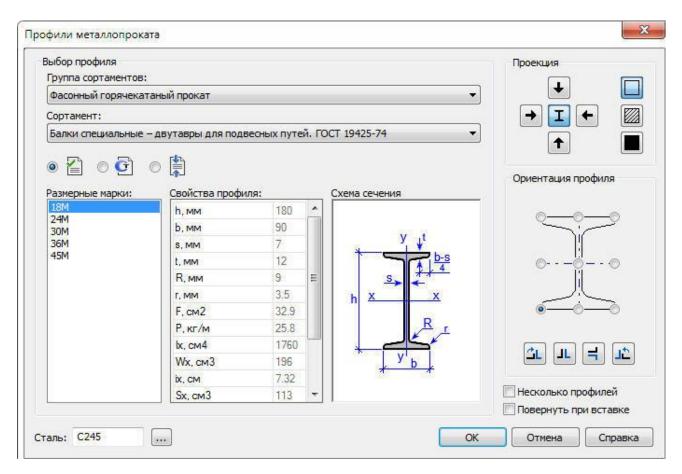


Рис. 27. Профили металлопроката

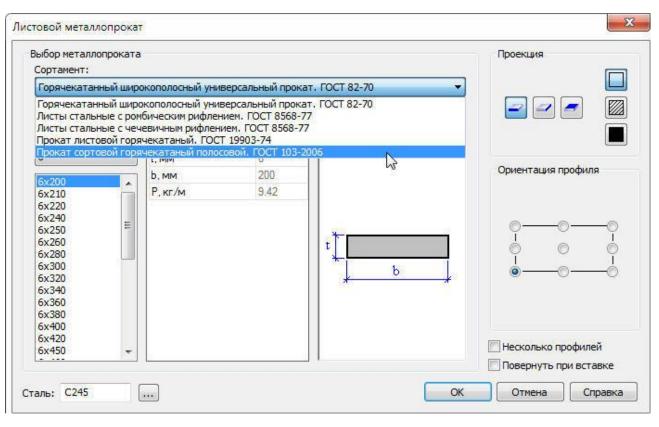


Рис. 28. Профили металлопроката. Листовой металлопрокат

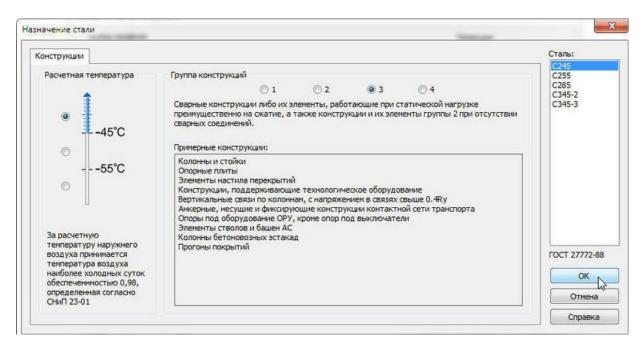


Рис. 29. Назначение марки стали

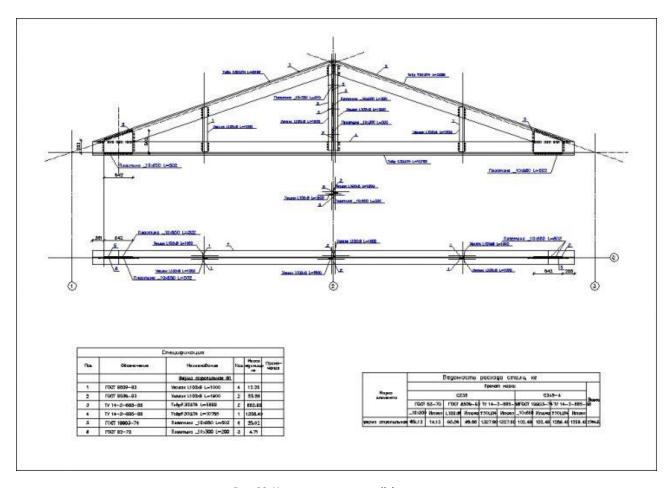


Рис. 30. Чертеж металлической фермы

- произвольная резка элементов металлопроката, в том числе отверстий произвольной конфигурации;
- отрисовка раззенкованного отверстия на виде листового проката сверху и сбоку с проверкой принимаемого решения;
- добавление высаженной головки к детальным стержням;

- обозначение диаметра загиба для оформления чертежей арматурных стержней детального армирования;
- изображение сварного шва в плане и сечении (рис. 31);

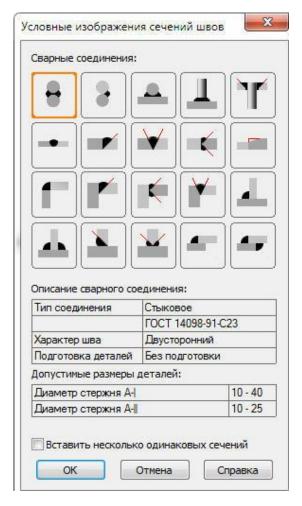


Рис. 31. Изображение сечений сварных швов

• генерация марок строповочных петель с отрисовкой марки строповочной петли на чертеже и последующим ее использованием в схематичном армировании (рис. 32).

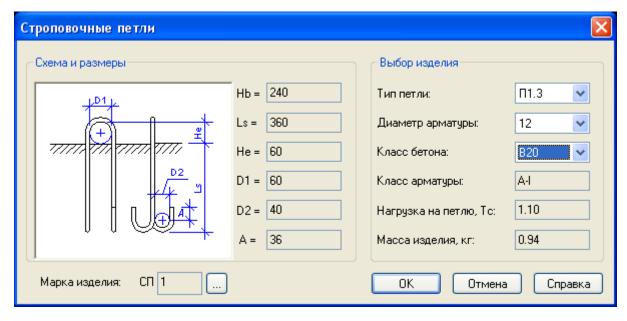


Рис. 32. Формирование марки строповочной петли

Арматурные изделия

Раздел предназначен для разработки чертежей марок сварных сеток и каркасов. Инструмент Сетки сварные по ГОСТ 23279–2012 позволяет быстро и корректно выбрать значения параметров, автоматически выполнить вычисления, а также подготовить изображение марки сетки или каркаса для вставки в чертеж. Все выбираемые параметры сеток соответствуют значениям ГОСТ (рис. 33).

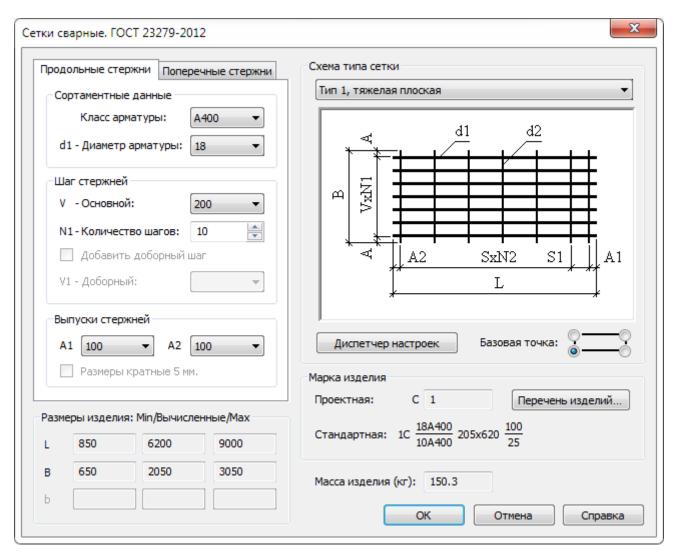


Рис. 33. Сетки сварные

При этом:

- автоматически контролируются наборы диаметров продольных и поперечных стержней по условиям сварки и соответствие габаритов сетки разрешенным параметрам;
- набор диаметров автоматически изменяется в соответствии с нормативным документом, принятым на стадии начала работы над проектом (СНиП 2.03.01-84 или СП 52-101-2003);
- на основе выбранных параметров изделия автоматически калькулируются общие размеры сетки (длина и ширина). Если полученное значение превышает разрешенную величину, программа не позволяет создать сетку;
- автоматически генерируется стандартная марка изделия для вставки в спецификацию;
- общая масса изделия вычисляется автоматически (используются данные стержней, входящих в состав сетки) (рис. 34);

• программа позволяет, используя специальные инструменты резки стандартных арматурных изделий и сборки новой марки из разрозненных детальных, схематичных элементов армирования и элементов металлопроката, формировать нестандартные арматурные изделия.

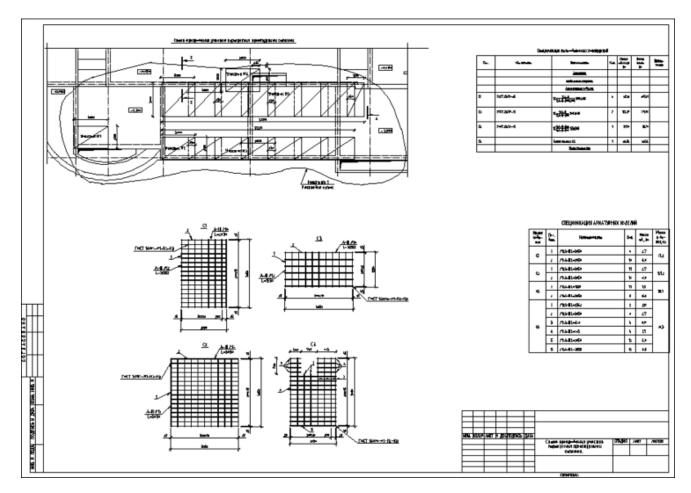


Рис. 34. Чертежи раскладки сеток

Технология, порядок работы и возможности формирования чертежей марок арматурных каркасов аналогичны процессу формирования чертежей марок сварных арматурных сеток.

Ассоциативные выноски

Раздел содержит команды, предназначенные для создания на чертеже ассоциативных выносок, обеспечивающих жесткую связь данных в выноске и элементе (рис. 35-36).

Рис. 35. Меню раздела «Обозначение элемента»

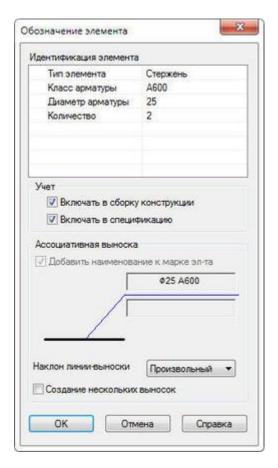


Рис. 36. Обозначение элемента

- Обозначение элемента (создание одиночной выноски и выноски с группы элементов). При создании выноски с группы элементов контролируются параметры каждого элемента. Применяется для схематичных, детальных элементов армирования и закладных деталей.
- Гребенчатая выноска. При создании выноски с группы элементов контролируются параметры каждого элемента. Применяется для схематичных и детальных элементов армирования.
- Цепная выноска. При создании выноски с группы элементов контролируются параметры каждого элемента. Применяется для схематичных и детальных элементов армирования.
- Обозначение сеток. Команда предназначена для получения ассоциативных выносок как с отдельных схематичных сеток, так и с массивов.
- Позиционирование деталей изделия. Команда предназначена для получения ассоциативных выносок с элементов чертежей марок сеток и каркасов.
- Обозначение диаметров загибов арматурных стержней (арматурные стержни детального армирования).
- Обозначение маркировки сварных швов.

Ассоциативные выноски ко всем элементам армирования обеспечивают автоматическое обновление данных выноски при изменении свойств объекта и данных об элементе в выноске.

Сборки и спецификации

Раздел содержит команды, выполняющие сервисные функции. Возможности, предоставляемые инструментами этого раздела:

- возможность разгиба анкерного крюка;
- регистрация чертежа детали для последующего использования сформированной марки в чертежах конструкций;
- резка массива стержней для создания нестандартных арматурных изделий;
- сборка и маркировка изделий из отдельных элементов армирования, в том числе арматурных и закладных (рис. 37).

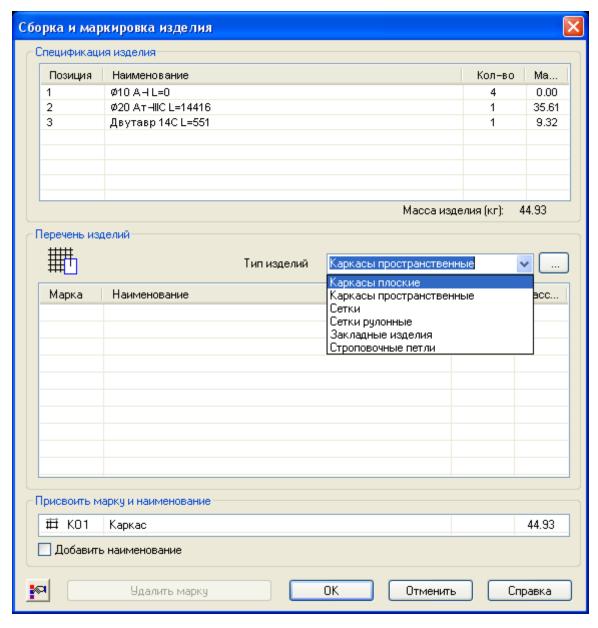


Рис. 37. Сборка и маркировка арматурного изделия

Сборные железобетонные конструкции

Составные перемычки над проемами

Раздел содержит базу данных стандартных элементов (перемычки брусковые, плитные, фасадные, сортамент металлопроката), используемых при формировании составных

перемычек. База сечений перемычек включает множество готовых сечений, а также обеспечивает возможность:

- быстрого и удобного формирования и редактирования сечений с помощью специального диалога;
- удобного отбора сечений из базы по параметрам проема и стены.

Программа обеспечивает автоматический подбор вариантов реализации каждого элемента сечения в базе данных проекта, создание маркировки и сохранение всей необходимой информации в чертеже. При формировании перемычки автоматически отслеживается соответствие графических параметров данным из базы, в случае их несоответствия программа сообщает пользователю об ошибке (рис. 38). Ведомости и спецификации перемычек по этажам, фрагментам или по всему объекту формируются в автоматическом режиме.

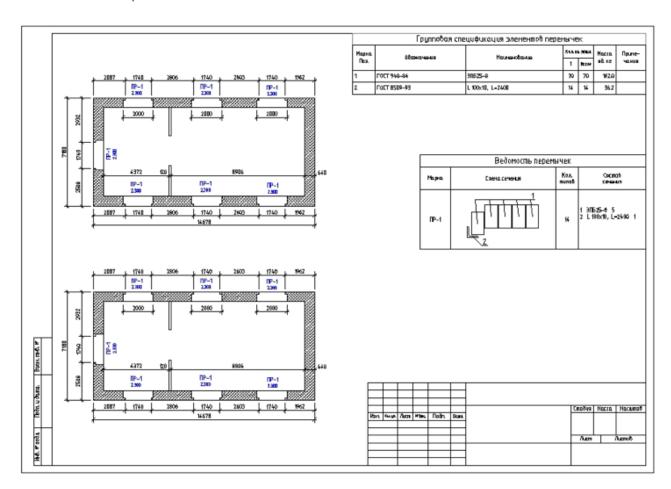


Рис. 38. Пример чертежа схемы расположения элементов перемычек

Плиты перекрытий

Раздел содержит базу данных стандартных плит перекрытия. Реализованы следующие функции:

- раскладка как одиночной плиты, так и массива плит определенного типа, задаваемого пользователем;
- автоматическая раскладка плит по заданному участку, подбор нескольких вариантов раскладки с использованием плит из базы проекта (рис. 39);
- контроль опирания плит на стену;
- распределение монолита по участку;

- редактирование раскладки и одиночных плит;
- перестановка плит и монолитных участков в пределах существующего участка раскладки;
- слияние и разбиение монолитных участков в пределах раскладки;
- замена плиты на монолитный участок и наоборот, а также замена плиты на плиту другого размера;
- перенумерация плит перекрытий;
- получение информации по указанным плитам;
- формирование спецификаций плит перекрытий на этаж, объект, по выбору на чертеже;
- подсчет в спецификации к схеме раскладки плит перекрытия количества закладных изделий, отрисованных на чертеже раскладки плит с использованием инструмента Условное изображение элемента раздела Схематичное армирование (рис. 40-41).

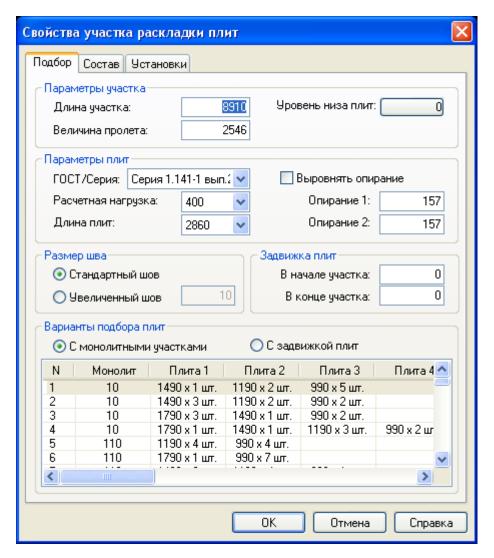


Рис. 39. Формирование участка раскладки плит перекрытия

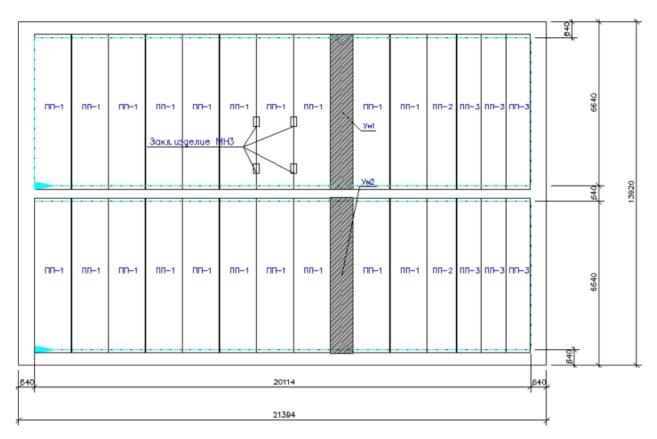


Рис. 40. Схема расположения плит перекрытия

Спецификация к схеме расположения элементов перекрытия

Марка Поз.	Обозначение	Наименование	Кол.	Масса ед., кв	Приме- чание
		Панели перекрытия			
ПП—1	Серия 1.141—1 выл.63	ΠΚ 63.15-8AmVT	20	2950	
ПП-2	Серия 1.141—1 выл.63	ΠΚ 63.12-8AmVT	2	2200	
пп–з	Серия 1.141—1 Выл.63	ΠΚ 63.10-8AmVT	6	1825	
		Монолитные участки			
Ум1		Ум1	1		1.27 м3
Ум2		Ум2	1		1,27 м3
		<u>Изделия закладные</u>			. *
мнз		Закл. изделие МНЗ	4	0.60	

Рис. 41. Спецификация к схеме расположения плит перекрытия

Результатом применения инструментов программы являются полностью оформленные чертежи марок КЖ и КЖИ. Сроки выполнения проектных работ снижаются минимум на 30%. В качестве примера приводим чертеж перекрытия, выполненный средствами программы Project Studio[©] Конструкции (рис. 42–43).

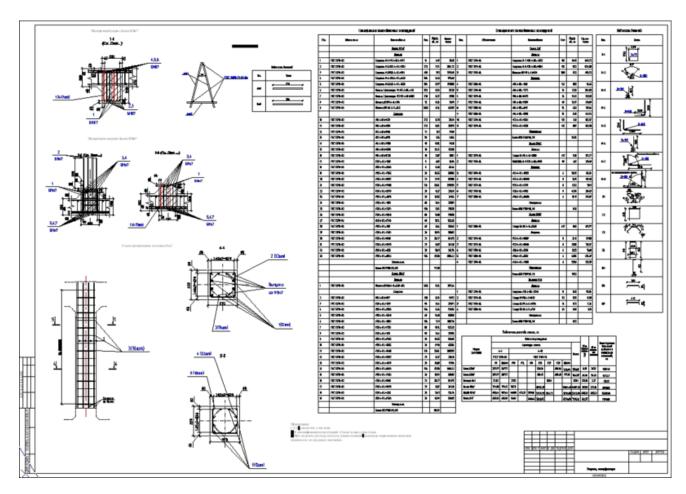


Рис. 42. Пример чертежа армирования колонны

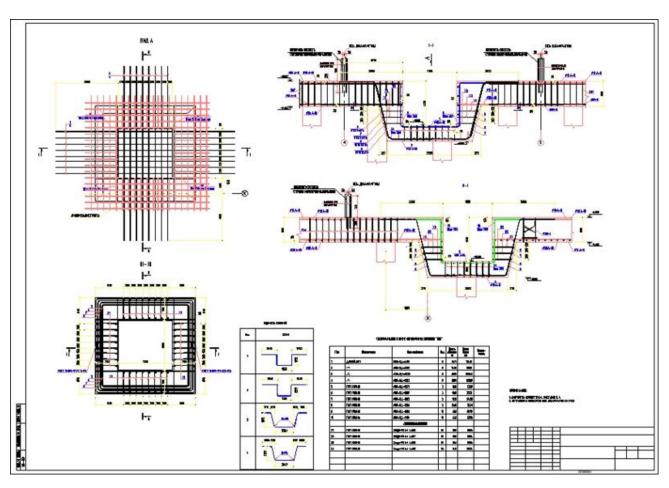


Рис. 43. Пример чертежа армирования приямка